
Kreporter 3.0 February 2013 Page 1

KReporter v3.0
Custom Functions, Formulas, KReporter Fields

http://www.youtube.com/user/theKReporter

http://www.facebook.com/kreporter.org

http://www.youtube.com/user/theKReporter
http://www.facebook.com/kreporter.org

Kreporter 3.0 February 2013 Page 2

Basics about Custom Functions and Formulas .. 3

KReporter Fields .. 4

Functions & Custom Functions .. 7

Formulas .. 12

Kreporter 3.0 February 2013 Page 3

Basics about Custom Functions and Formulas
The main concept behind KReporter is to gather data from the database out of the various modules

Sugar can offer. There is a couple of standard transformations for values and of course a wealth of

functionalities for data manipulation like grouping, averages, etc.

However there is typically in many case a need to apply custom transformation on data – either

during selection or after selection from the database.

KReporter supports that with 3 different methods that help achieve this.

(1) KReporter Fields: those are fields that are defined on vardef level in SugarCRM. They are

available for the user and represent non databse fields that gather data with certain SQL

logic during Selection from the database. On the one hand they are easy for the user but on

the other hand are more or less static in their definition. They are typically a good option for

regular used data transformation

(2) Custom function offer the possibility to add SQL logic within the reporter. The SQL code

injected here can be defined through the KReporter design interface. Thus they are quite

flexible but require knowledge of SQL statement. Those is a typical option that can be used

for simpler or not frequent used transformations.

(3) Formulas are applied after data has been selected. While (1) and (2) are processed on the

database this logic is processed within PHP. This is a good option for data that you cannot get

from the database or where additional data is required.

Kreporter 3.0 February 2013 Page 4

KReporter Fields
To define KReporttype fields they need to be added to the vardef of a module. Take an example that

you want to add a field for the weighted amount of an opportunity where you simply multiply the

amount by the probability of the opportunity and return that amount.

TO create the KReporter field add a file (I called) Opportunity.kreporter.weightedamount.php to

directory custom/Extension/modules/Opportunies/Ext/Vardefs with the following content:

<?php

$dictionary['Opportunity']['fields']['weighted_amount'] = array(

 'name' => 'weighted_amount',

 'vname' => 'LBL_WEIGTED_AMOUNT',

 'type' => 'kreporter',

 'source' => 'non-db',

 'kreporttype' => 'currency',

 'currency_id' => 'currency_id',

 'eval' => '{t}.amount * {t}.probability / 100'

);

?>

The label LBL_WEIGHTED_AMOUNT is defined in another file (I called)

en_us.kreporter.opportunities.lang.php in directory

custom/Extension/modules/Opportunies/Ext/Language. The content of the file is as follows:

<?php

$mod_strings['LBL_WEIGTED_AMOUNT'] = 'weighted Amount';

?>

Do a quick repair in the admin panel to add this to the vardefs of Opportunities.

What this does is to add a non-db field (no data is stored in the database) that is only visible in

KReporter when you create a report. ‘name’ and ‘vname’ are the typical settings. The type need to

be set to ‘kreporter’ and the source to ‘non-db’. With the kreporttype property you can define how

the field is treated by the reporter in regards to select options and rendering. In our case we want to

see this as a currency. The additional option ‘currency_id’ tells KReporter which currency to display.

If this is not set it is displayed in the systems currency.

Last but not least the eval option is defined. This is an SQL statement that is dynamically replaced

instead of simply selecting the fields. The options you can use are {t} for the table of the module and

{tc}for the _cstm table of the module if you are using custom fields defined with Studio.

In our case we multiply the amount {t}.amount from the opportunity with the Probability

{t}.probability and divide by 100.

If we create a new report for an opportunity the available fields look as follows and we can easily

drag the kreporter field over to the listed fields.

Kreporter 3.0 February 2013 Page 5

If we save the report and run it the result looks as follows.

The field as stated in the eval statement is evaluated. If we look at the SQL statement generated in

the Query Analyzer you can see that instead of simply selecting the field the statement I evaluated

and the {t} we used in the eval statement if replaced by the alias for the opportunities table in this

select statement. The field is rendered as a regular currency fields and the currency symbol is

rendered from the currency_id field on the opportunity.

The KReporter field will also be evaluated if you use it in a where clause but has its limitations there

due to the SQL language. This is still an option but in some cases is not sufficient when you e.g. need

Kreporter 3.0 February 2013 Page 6

to use an exist clause in the where statement and a subselect in the select part. To use the extended

functionality you can define the eval variable now as an array with the following sections:

‘presentation’ another array that only contains one element named ‘eval’ that holds a snippet of SQL

code. ‘selection’ an array of sql snippets where the index of the array equals the operator as listed in

the section described above. With that also the list of available operators can be limited and each

operator can have a custom SQL code injected.

The available variables in the SQL strings are:

{t} for the table we are on.

{p1} and {p2} for the 2 selection parameters. If they are filled are determined by the operator and

you need to react to that.

An example for a kreporter field in vardefs can look as follows:

$dictionary['Account']['fields']['kpostalcode'] = array(

 'name' => 'kpostalcode',

 'vname' => 'LBL_KFZKZ',

 'type' => 'kreporter',

 'source' => 'nondb',

 'kreporttype' => 'varchar',

 'eval' => array(

 'presentation' => array(

 'eval' => 'select group_concat(kpostalcodes.kfzkz) from kpostalcodes where

 kpostalcodes.postalcode = {t}.billing_address_postalcode',

),

 'selection' => array(

 'equals' => 'exists(select * from kpostalcodes where kfzkz = \'{p1}\' and

 postalcode = {t}.billing_address_postalcode)',

 'between' => 'exists(select * from kpostalcodes where kfzkz >= \'{p1}\' and kfzkz

 <= \'{p2}\' and postalcode = {t}.billing_address_postalcode)',

 'starts' => 'exists(select * from kpostalcodes where kfzkz like \'%{p1}\' and

 postalcode = {t}.billing_address_postalcode)',

 'contains' => 'exists(select * from kpostalcodes where kfzkz like \'%{p1}%\' and

 postalcode = {t}.billing_address_postalcode)'

)

)

);

The above defines an additional field that in the selection reads records from a separate table in the

database and concatenates values. In the selection screen this field will offer the operators ‘ignore’

(this is always offered) as well as ‘=’, ‘between’, ‘starts’ and ‘contains’

Kreporter 3.0 February 2013 Page 7

Functions & Custom Functions
In the Manipulation View of the Reporter data can (as the title indicates) be manipulated. There are

standard function (like sum, count, average, …) that can be selected from a dropdown and mainly

apply to groupings being done. To add a custom function there is a separate field that when you click

into it a popup opens and the custom function can be edited.

Following the example from above we could achieve the same with a custom function here. Drag the

field amount over to the view and edit the custom function.

We also enter the custom function as follows: {t}.{f} * {t}.probability / 100. Also rename the field to

weighted (cstm function) and on the presentation tab set the override Type to Currency.

Kreporter 3.0 February 2013 Page 8

The latter one ensures that the field is rendered as currency again. Whenever you set a custom

function KReporter will no longer consider the type of the original field for the rendering since the

transformation most likely will change the format.

The variables you can use are similar to the KReporter field with {t} and {tc}. In addition you can use

{f} to reference the field you did drag over. You could of course specify this by the name but this

might cause issues in some union cases where the {f} comes in handy.

If we run the report this looks as follows. The difference in the currency symbol is attributed to the

fact that the amount field is not linked to a currency_id.

Another typical example to use the custom function is for date manipulation. E.g. when you wnt to

convert the expected close date of the opportunity to a closing Quarter. To do that edit the report

drag the expected close date field to the fields in the manipulation tab and set a custom function as

follows: ‘concat(‘Q/’, quarter({t}.{f}))’, rename the field to Closing quarter.

Kreporter 3.0 February 2013 Page 9

The Result looks as follows:

Another useful thing you can do is to do subselects. Assume we wan to additionally have the total

amount of all opportunities for that customer as a sum in the list. To achieve that we add the ID field

from the accounts link in the opportunity and edit the custom function as follows: SELECT

sum(amount) FROM opportunities INNER JOIN accounts_opportunities ON

accounts_opportunities.opportunity_id = opportunities.id WHERE accounts_opportunities.account_id

= {t}.{f}.

Kreporter 3.0 February 2013 Page 10

Rename the field to Opp total and set the renderer again to Currency in the Presentation Tab.

Save the report and the Result looks as follows. The total of all opportunities for the account are

summarized and then presented in the list.

Kreporter 3.0 February 2013 Page 11

You can literally use all kinds of statement the SQL database can accept. But be aware that this might

impact report performance and also that if you mistype there might be SQL errors and no results at

all.

Kreporter 3.0 February 2013 Page 12

Formulas
While KReporter Fields and Custom functions are processed during the select statement the

Formulas are processed on the result record per each row in the PHP layer. This offers further

capabilities but also needs to be done carefully since this has a further impact on the performance.

If we want to solve the issue of getting a weighted Pipeline via Formulas we can do this as well as

follows. In the first step drag over the amount field in the manipulation view for another time. This

time we want to make use of the fields Store in the Grid. For the probability we type prob in that

field, for the amount amt.

You can use any name for a variable but generally do not use special chars and no spaces to make it

easier for yourself. This options puts the values into a store where you can afterwards use it in the

formula. For the Formula we type the following {amt} * {prob} / 100. Any value in {} refers to a

variable that is defined as a store. Keeping that consistent is your responsibility. The language used is

interpreted as PHP so you can use all functions PHP offers.

We again rename the field to wght (formula) and set the renderer to Currency. The result looks as

follows:

Kreporter 3.0 February 2013 Page 13

Not surprisingly the results are the same. Yet if you look at the Query Analyzer you can see that only

the amount is selected. No transformation is performed on the Database.

You can also use the feature for formatting of report results. Let’s assume we want to calculate how

much this opportunity is related to the total sum of opportunities for the account and if it is higher

than 50% highlight the value in red.

In first step we add a fixed field to the report and name it % of total. For the Opp total we added

using a subselect we add this to the store total. As a formula now we type the following

({amt}/{total} > 0.5 ? '' . round({amt} / {total} * 100, 2) . '%' :

round({amt} / {total} * 100, 2) . '%'). In a nutshell we divide the amount by the total and If this is > 0.5

Kreporter 3.0 February 2013 Page 14

we wrap a tag aroung the value with the color style set to red. If not we just return

the percentage. In any case we calculate the percentage and round it to 2 digits using the round

function of PHP and concatenate it with the ‘.’ With a % sign.

The other important thing to mention here is the third field which is the Sequence in which the

formulas are evaluated. In our case we first calculate the weighted amount and then the percentage.

If the sequence is not set the formulas will be evaluated in whatever order but cannot be predicted.

Since we need the weighted amount to be calculated first this is important that we ensure the

sequence is followed.

Save the report and the result looks as follows:

As wanted the percentage is shown and values higher than 50% are shown in red.

As mentioned this calls PHP functions and you can also call Sugar internal functions from here that

are globally and statically available. A good example is to embed an image. In the following example

we do a union report on activities and want to show a module specific icon. For that we add a fixed

field for the module to the Union Join, put that in the Store module like in the example shown for the

Calls and then use the Formula SugarThemeRegistry::current()->getImage({module}. '.png').

The manipulate Tab looks as follows:

Kreporter 3.0 February 2013 Page 15

The Result looks as follows. For each record an image is rendered depending on the type of record. In

our case Calls, Meetings and Tasks. And since the field we used the formula on also was set as ID with

a link the images are also linked.

